1. Who Laboratory Manual for the Examination and Processing of Human Semen. Sixth Edition. World Health Organization. 2021. Доступно по: https://www.who.int/publications/i/item/9789240030787. Ссылка активна на 23 августа 2023.
2. Jones R, Mann T, Sherins R. Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma // Fertility and Sterility. 1979. Vol. 31, N5. P. 531–537.
3. Alvarez JG, Touchstone JC, Blasco L, Storey BT. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity // Journal of andrology. 1987. Vol. 8, N5. P. 338–348.
4. Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa // Journal of reproduction and fertility. 1987. Vol. 81, N2. P. 459–469.
5. Bisht S, Dada R. Oxidative stress: Major executioner in disease pathology, role in sperm DNA damage and preventive strategies // Frontiers in bioscience (Scholar edition) 2017. Vol. 9, N3. P. 420–447.
6. O’Flaherty C, Matsushita-Fournier D. Reactive oxygen species and protein modifications in spermatozoa // Biology of reproduction. 2017. Vol. 97, N4. P. 577–585.
7. Ko EY, Sabanegh ES Jr, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity // Fertility and sterility. 2014. Vol. 102, N6. P. 1518–1527.
8. Venkatesh S, Shamsi MB, Dudeja S, et al. Reactive oxygen species measurement in neat and washed semen: comparative analysis and its significance in male infertility assessment // Archives of gynecology and obstetrics. 2011. Vol. 283, N1. P. 121–126.
9. Henkel R, Kierspel E, Stalf T, et al. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients // Fertility and Sterility. 2005. Vol. 83, N3. P. 635–642.
10. Erenpreiss J, Hlevicka S, Zalkalns J, Erenpreisa J. Effect of leukocytospermia on sperm DNA integrity: a negative effect in abnormal semen samples // Journal of Andrology. 2002. Vol. 23, N5. P. 717–723.
11. Сапожкова Ж.Ю., Милованова Г.А., Пацап О.И. Лабораторная диагностика мужского бесплодия. Маркеры и методы. Часть II // Лабораторная и клиническая медицина. Фармация. 2021. Т. 1, №2. С. 65–79.
12. Сапожкова Ж.Ю., Милованова Г.А., Пацап О.И. Лабораторная диагностика мужского бесплодия. Маркеры. Часть I // Лабораторная и клиническая медицина. Фармация. 2021. Т. 1, №1. С. 57–68.
13. Aitken RJ. Impact of oxidative stress on male and female germ cells: implications for fertility // Reproduction. 2020. Vol. 159, N4. P. R189–R201
14. Miller NJ, Rice-Evans C, Davies MJ. A new method for measuring antioxidant activity // Biochemical Society transactions. 1993. Vol. 21, N2. P. 95S
15. Miller NJ, Rice-Evans CA. Factors influencing the anti-oxidant activity determined by the ABTS+ radical cation assay // Free radical research 1997. Vol. 26, N3. P. 195–199.
16. Chatterjee, et al. Role of Measurement of Reactive Oxygen Species in Semen Sample of Patients with Male Factor Infertility and Treatment with Antioxidants in Patients with High ROS Levels // International Journal of Contemporary Medical Research. 2019. Vol. 6, N2. P. 81–85.
17. Wymann MP, von Tscharner V, Deranleau DA, and Baggiolini M: The onset of the respiratory burst in human neutro-phils. Real time studies of H2O2 formation reveal a rapid agonist-induced transduction process // Journal of biological chemistry. 1987. Vol. 262, N25. P. 12048–12053
18. Muratori M, Marchiani S, Tamburrino L, Cambi M, Lotti F, Natali I et al. DNA fragmentation in brighter sperm predicts male fertility independently from age and semen parameters // Fertility and sterility. 2015. Vol. 104, N3. P. 582–90.e4.
19. Muratori M, Marchiani S, Tamburrino L, Baldi E. Sperm DNA Fragmentation: Mechanisms of Origin // Advances in experimental medicine and biology. 2019. Vol. 1166. P. 75–85.
20. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis // Fertility and sterility. 2010. Vol. 93, N4. P. 1027–1036.
21. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis // Human Reproduction. 2012. Vol. 27, N10. P. 2908–2917.
22. Cissen M, Wely MV, Scholten I, Mansell S, Bruin JP, Mol BW et al. Measuring Sperm DNA Fragmentation and Clinical Outcomes of Medically Assisted Reproduction: A Systematic Review and Meta-Analysis // PLoS One. 2016. Vol. 11, N11. P. e0165125.
23. Simon L, Zini A, Dyachenko A, Ciampi A, Carrell DT. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome // Asian Journal of Andrology. 2017. Vol. 19, N1. P. 80–90.
24. Tan J, Taskin O, Albert A, Bedaiwy MA. Association between sperm DNA fragmentation and idiopathic recurrent pregnancy loss: a systematic review and meta-analysis // Reproductive Biomedicine Online. 2019. Vol. 38, N6. P. 951–960.
25. Evgeni E, Charalabopoulos K, Asimakopoulos B. Human sperm DNA fragmentation and its correlation with conventional semen parameters // Journal of Reproduction and Infertility. 2014. Vol. 15, N1. P. 2–14.
26. Klaude M, Eriksson S, Nygren J, Ahnstrom G. The comet assay: mechanisms and technical considerations // Mutation Research. 1996. Vol. 363, N2. P. 89–96.
27. McKelvey-Martin VJ, Melia N, Walsh IK, Johnston SR, Hughes CM, Lewis SE, et al. Two potential clinical applications of the alkaline single-cell gel electrophoresis assay: (1). Human bladder washings and transitional cell carcinoma of the bladder; and (2). Human sperm and male infertility // Mutation Research. 1997. Vol. 375, N2. P. 93–104.
28. Simon L, Carrell DT. Sperm DNA damage measured by comet assay // Methods in Molecular Biology. 2013. Vol. 927. P. 137–146.
29. Baumgartner A, Cemeli E, Anderson D. The comet assay in male reproductive toxicology // Cell Biology and Toxicology 2009. Vol. 25, N1. P. 81–98.
30. Konca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Gozdz S, et al. A cross-platform public domain PC image-analysis program for the comet assay // Mutation Research. 2003. Vol. 534, N1–2. P. 15–20.
31. Gonzalez JE, Romero I, Barquinero JF, Garcia O. Automatic analysis of silver- stained comets by CellProfiler soft-ware // Mutation Research. 2012. Vol. 748, N1–2. P. 60–64.
32. Simon L, Castillo J, Oliva R, Lewis SE. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes // Reproductive Biomedicine Online. 2011. Vol. 23, N6. P. 724–734.
33. Ribas-Maynou J, Garcia-Peiro A, Fernandez-Encinas A, Abad C, Amengual MJ, Prada E., et al. Comprehensive analysis of sperm DNA fragmentation by five different assays: TUNEL assay, SCSA, SCD test and alkaline and neutral Comet assay // Andrology. 2013. Vol. 1, N5. P. 715–722.
34. Javed A, Talkad MS, Ramaiah MK. Evaluation of sperm DNA fragmentation using multiple methods: a comparison of their predictive power for male infertility // Clinical and experimental reproductive medicine. 2019. Vol. 46, N1. P.14–21.
35. Evenson DP. Sperm chromatin structure assay (SCSA(R)) // Methods in molecular biology 2013. Vol. 927, P. 147–64.
36. Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic // Human Reproduction. 1999. Vol. 14, N4. P. 1039–1049.
37. Giwercman A, Lindstedt L, Larsson M, Bungum M, Spano M, Levine RJ et al. Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case-control study // International journal of andrology. 2010. Vol. 33, N1. P. e221.
38. Martinez MG, Sanchez-Martin P, Dorado-Silva M, Fer-nandez JL, Girones E, Johnston SD et al. Magnetic-activated cell sorting is not completely effective at reducing sperm DNA fragmentation //Journal of assisted reproduction and genetics. 2018. Vol. 35, N12. P. 2215–2221.
39. Fernandez JL, Cajigal D, Lopez-Fernandez C, Gosalvez J. Assessing sperm DNA fragmentation with the sperm chromatin dispersion test // Methods in molecular biology 2011. Vol. 682. P. 291–301.
40. Fernandez JL, Muriel L, Goyanes V, Segrelles E, Go-salvez J, Enciso M, et al. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertility and Sterility. 2005. Vol. 84, N4. P. 833–842.
41. Сапожкова Ж.Ю., Еремин К.И., Пацап О.И. Оценка дисперсии ДНК-фрагментов сперматозоидов у мужчин с бесплодием: из клинических исследовании? первого россии?ского набора ГЕМСТАНДАРТ – ГалоСперм Л&К // Лабораторная и клиническая медицина. Фармация. 2022. Т. 2, №3. С. 37–56.
42. Gosalvez J, Rodriguez-Predreira M, Mosquera A, Lopez-Fernandez C, Esteves SC, Agarwal A, et al. Characterisation of a subpopulation of sperm with massive nuclear damage, as recognised with the sperm chromatin dispersion test // Andrologia. 2014. Vol. 46, N6. P. 602–609.
43. Gallegos G, Ramos B, Santiso R, et al. Sperm DNA fragmentation in infertile men with genitourinary infection by Chlamydia trachomatis and Mycoplasma // Fertility and Sterility. 2008. Vol. 90, N2. P. 328–334.
44. Enciso M, Muriel L, Fern?ndez JL, et al. Infertile men with varicocele show a high relative proportion of sperm cells with intense nuclear damage level, evidenced by the sperm chromatin dispersion test // Journal of Andrology. 2006. Vol. 27, N1. P. 106–111.
45. Chohan KR, Griffin JT, Lafromboise M, De Jonge CJ, Carrell DT. Comparison of chromatin assays for DNA fragmentation evaluation in human sperm // Journal of Andrology. 2006. Vol. 27, N1. P. 53–59.
46. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J. and Giwercman A. Sperm DNA integrity assessment in prediction of assisted reproduction technology out-come // Human Reproduction. 2007. Vol. 22, N1. P. 174–179.
47. Payne JF, Raburn DJ, Couchman GM, Price?, Jamison MG, Walmer DK. Redefining the relationship between sperm deoxyribonucleic acid fragmentation as measured by the sperm chromatin structure assay and outcomes of assisted reproductive techniques // Fertility and Sterility. 2005. Vol. 84, N2. P. 356–364.
48. Evenson DP, Jost LK, Marshall D, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic // Human Reproduction. 1999. Vol. 14, N4. P. 1039–1049.
49. Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team // Fertility and Sterility. 2000. Vol. 73, N1. P. 43–50.
50. Larson KL, DeJonge CJ, Barnes AM, Jost LK, Evenson DP. Sperm chromatin structure assay For professional use only BRED-0026/8 parameters as predictors of failed pregnancy following assisted reproductive techniques // Human Reproduction. 2000. Vol. 15, N8. P. 1717–1722.
51. Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay // Fertility and Sterility. 2003. Vol. 80, P. 895–902.
52. Saleh RA, Agarwal A, Nada EA, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility // Fertility and Sterility. 2003. Vol. 79, Suppl 3. P. 1597–1605.
53. Boe-Hansen GB, Fedder J, Ersboll AK, Christensen P. The sperm chromatin structure assay as a diagnostic tool in the human fertility clinic // Human Reproduction. 2006. Vol. 21, N6. P. 1576–1582.
54. Gandini L, Lombardo F, Paoli D, et al. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage // Human Reproduction. 2004. Vol. 19, N6. P. 1409–1417.
55. Zini A, Meriano J, Kader K, Jarvi K, Laskin CA, Cadesky K. Potential adverse effect of sperm DNA damage on embryo quality after ICSI // Human Reproduction. 2005. Vol. 20, N12. P. 3476–3480.
56. Greco E, Romano S, Iacobelli M, et al. ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment // Human Reproduction. 2005. Vol. 20, N9. P. 2590–2594.
57. Alvarez C, Castilla JA, Martinez L, Ramirez JP, Vergara F, Gaforio JJ. Biological variation of seminal parameters in healthy subjects // Human Reproduction. 2003. Vol. 18. P. 2082–2088.
58. Keel BA. Within- and between-subject variation in semen parameters in infertile men and normal semen donors // Fertility and Sterility. 2006. Vol. 85, N1. P. 128–134.
59. Smit M, Dohle GR, Weber RFA, Romijn H. Sperm DNA damage is associated with impaired spermatogenesis, rather than with post testicular etiologies // Journal of Andrology. 2006. P. 71.
60. Erenpreiss J, Bungum M, Spano M, Elzanaty S, Orbidans J, Giwercman A. Intraindividual variation in sperm chromatin structure assay parameters in men from infertile couples: clinical implications // Human Reproduction. 2006. Vol. 21, N8. P. 2061–2064.
61. Сапожкова Ж.Ю. Способ лабораторной диагностики мужской репродуктивной функции на базе оценки дисперсии ДНК-фрагментов сперматозоидов. Патент РФ №2795567. Заявл. 2022131789, 06.12.2022. Опубл. 05.05.2023. Бюл. № 13